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Background and Purpose: Heart failure can reflect impaired contractile function at

the myofilament level. In healthy hearts, myofilaments become more sensitive to Ca2+

as cells are stretched. This represents a fundamental property of the myocardium that

contributes to the Frank–Starling response, although the molecular mechanisms

underlying the effect remain unclear. Mavacamten, which binds to myosin, is under

investigation as a potential therapy for heart disease. We investigated how

mavacamten affects the sarcomere-length dependence of Ca2+-sensitive isometric

contraction to determine how mavacamten might modulate the Frank–Starling

mechanism.

Experimental Approach: Multicellular preparations from the left ventricular-free wall

of hearts from organ donors were chemically permeabilized and Ca2+ activated in the

presence or absence of 0.5-μM mavacamten at 1.9 or 2.3-μm sarcomere length

(37�C). Isometric force and frequency-dependent viscoelastic myocardial stiffness

measurements were made.

Key Results: At both sarcomere lengths, mavacamten reduced maximal force and

Ca2+ sensitivity of contraction. In the presence and absence of mavacamten, Ca2+

sensitivity of force increased as sarcomere length increased. This suggests that the

length-dependent activation response was maintained in human myocardium, even

though mavacamten reduced Ca2+ sensitivity. There were subtle effects of

mavacamten reducing force values under relaxed conditions (pCa 8.0), as well as

slowing myosin cross-bridge recruitment and speeding cross-bridge detachment

under maximally activated conditions (pCa 4.5).

Conclusion and Implications: Mavacamten did not eliminate sarcomere length-

dependent increases in the Ca2+ sensitivity of contraction in myocardial strips from

organ donors at physiological temperature. Drugs that modulate myofilament func-

tion may be useful therapies for cardiomyopathies.
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1 | INTRODUCTION

Cardiovascular disease remains a leading cause of death worldwide.

Heart failure develops when the organ's ability to pump blood is com-

promised and elevated filling pressures are required to maintain ade-

quate circulation (Borlaug & Paulus, 2011; Mozaffarian et al., 2016).

Heart failure is a growing health problem affecting �30 million people

worldwide, with 50% of patients dying within 5 years of diagnosis

(Ambrosy et al., 2014; Mozaffarian et al., 2016). The causes of heart

failure are multifactorial, but dysregulated myofilament function

within the sarcomere is a leading contributor. Recently, multiple phar-

maceutical compounds have been developed to directly influence

myofilament protein function as potential new therapies for heart dis-

ease (Cleland et al., 2011; Green et al., 2016; Grillo et al., 2018;

Heitner et al., 2019; Kawas et al., 2017; Malik et al., 2011; Teerlink

et al., 2016).

Cardiac muscle contraction is powered by cyclic interactions

between myosin cross-bridges along thick filaments and actin-binding

sites along thin filaments (Huxley & Hanson, 1954; Lymn &

Taylor, 1971). Contractility is modulated by several well-known

mechanisms including, (i) Ca2+ regulation via the thin-filament

proteins troponin and tropomyosin, which modulates the number of

available actin binding on a thin filament as intracellular [Ca2+] rises

and falls throughout a heartbeat and (ii) thick-to-thin filament over-

lap, which determines how many cross-bridges are close enough to

bind with Ca2+-activated sites on actin. A mechanosensitive thick-

filament regulatory mechanism has also been discovered, whereby

myosin heads transition between OFF (also called the super-relaxed

state or interacting heads motif) and ON states (also called the

disordered-relaxed state) (Campbell, 2017; Hooijman et al., 2011).

Heads in the OFF state are unable to bind actin (Figure 1),

whereas those in the ON state can form cross-bridges by attaching

to actin (Anderson et al., 2018; Liu et al., 2018; Rohde et al., 2018;

Spudich, 2015). OFF–ON transitions can be very dynamic

(Fusi et al., 2017; Piazzesiet al., 2018; Reconditi et al., 2017) and

equilibrium kinetics are known to be regulated by (i) biochemical and

steric interactions with thick-filament regulatory proteins (regulatory

light chain; Kampourakis et al., 2016; Toepfer et al., 2013; Zhang

et al., 2017; and cardiac myosin-binding protein-C; McNamara

et al., 2017; McNamara et al., 2015) as well as (ii) myocardial force

levels (Ait-Mou et al., 2016; Campbell et al., 2018; Fusi et al., 2016;

Kampourakis et al., 2016; Linari et al., 2015). These multiple regula-

tion pathways combine to influence length-dependent activation of

contraction, wherein the myofilaments become more sensitive to Ca2

+ as muscle cells are stretched. Length-dependent activation is an

important cellular-level mechanism that underpins the Frank–Starling

mechanism and enables the heart to increase cardiac output in

response to elevated filling pressure.

The relative impact of thick- and thin-filament regulatory

processes becomes difficult to separate, given myriad allosteric

protein interactions along and between the filaments (reviewed by

Gordon et al., 2000). These interactions facilitate the large change

in force given a small change in [Ca2+], illustrated by the Hill

coefficients of the isometric force–pCa relationship being

greater than 1. Dynamic changes in myocardial force influence

regulatory coupling as well (Figure 1), where increased force during

a cardiac twitch pulls additional myosin heads from OFF to ON

(Brunello et al., 2020). As the thin filaments become Ca2+ activated,

the ON heads will begin to actively generate force, which can

further shift the pool of myosin heads from OFF to ON, thereby

dynamically increasing cross-bridge binding and myocardial force

production. It is also plausible that the opposite occurs during

diastole to facilitate relaxation. Dynamic filament coupling enables

robust activation and deactivation of contraction in health.

Mechanisms that impair dynamic coupling can lead to

dysfunctional contraction and relaxation with progression of heart

disease (Campbell, 2017; Sparrow et al., 2019, 2020; Toepfer

et al., 2016, 2020).

Mavacamten (formerly known as MYK-461; MyoKardia Inc.) is

a drug under investigation to treat cardiac hypercontractility, a phe-

notype commonly associated with a form of heart disease called

hypertrophic cardiomyopathy (Green et al., 2016; Stern

et al., 2016; Toepfer et al., 2020). Hypertrophic cardiomyopathy

affects 1:200 people and it is commonly associated with mutations

in sarcomeric proteins. Although penetrance is highly variable, the

mutations have been linked to elevated myocardial activation at

low intracellular [Ca2+] during diastole (Semsarian et al., 2015; Van

Der Velden et al., 2018). This can impair relaxation and precede

What is already known

• Mavacamten binds to myosin, slows myosin ATPase and

stabilizes the myosin OFF state.

• Mavacamten is currently being tested in clinical trials for

hypertrophic cardiomyopathy.

What this study adds

• Mavacamten reduces isometric force and Ca2+ sensitivity

of contraction in human myocardial strips at body

temperature.

• Length-dependent increases in Ca2+ sensitivity are

maintained in presence of 0.5-μM mavacamten.

What is the clinical significance

• Drugs that modulate myofilament function are potential

therapies for heart disease.

• The OFF–ON equilibrium of myosin may be a particularly

important therapeutic target.
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the development of hypertrophy. Contractile function during

systole is often preserved or even enhanced (Ho et al., 2009;

Michels et al., 2009). As the disease progresses, the ventricular

walls thicken and stiffen, impairing ventricular filling and reducing

cardiac output (Brandt et al., 1967; Klein et al., 1965; Maron

et al., 1995; Semsarian et al., 2015; Stewart et al., 1968; Wilson

et al., 1967).

Mavacamten binds to myosin, inhibits actin–myosin ATPase

activity and stabilizes the myosin OFF state (Anderson et al., 2018;

Green et al., 2016; Rohde et al., 2018; Toepfer et al., 2019, 2020).

Solution biochemistry, in vitro motility and single molecule assays

have shown that mavacamten slows the rates of inorganic phosphate

(Pi) and ADP release (Green et al., 2016; Kawas et al., 2017; Rohde

et al., 2018). Mavacamten also slows the rate of cross-bridge recruit-

ment in skinned rodent myocardium (Mamidi et al., 2018), consistent

with the idea of slowed myosin attachment and Pi release reducing

cross-bridge force production. Increased concentrations of

mavacamten reduced sarcomere shortening and accelerated relaxa-

tion in isolated electrically paced myocytes (Sparrow et al., 2019;

Sparrow et al., 2020; Toepfer et al., 2019, 2020). Using genetically

encoded calcium probes conjugated to troponin T and troponin I,

Sparrow et al. (2019) showed that mavacamten reduced calcium acti-

vation at the myofilament, evident via reducing the time to 50% peak

calcium binding, the time to 50% calcium release, and relative peak

height of the calcium transient in electrically paced Guinea pig

cardiomyocytes. These effects had not been apparent in prior studies

using cytosolic calcium-sensing dyes (Green et al., 2016; Toepfer

et al., 2019, 2020). Although there are mixed findings with respect to

mavacamten either reducing or not affecting Ca2+ sensitivity of

contraction in skinned myocardial strips (Green et al., 2016; Mamidi

et al., 2018), studies have shown that mavacamten consistently

reduces maximal force production (Anderson et al., 2018; Green

et al., 2016; Mamidi et al., 2018).

The effects of mavacamten on myosin force production and

ATPase activity suggest that mavacamten may reduce hyper-

contractility and improve diastolic relaxation by depressing activity

of the myosin motor (Heitner et al., 2019; Tuohy et al., 2020).

However, the mechanisms through which mavacamten affects

myosin cross-bridge kinetics and its potential effects on

length-dependent myocardial function (i.e. the cellular basis of the

Frank–Starling law) remain unclear. Therefore, we tested the effect

of mavacamten on Ca2+-activated force production at 1.9- and

2.3-μm sarcomere length in permeabilized myocardial strips from

organ donors.

2 | METHODS

2.1 | Human tissue samples

Cardiac samples were obtained from six organ donors (two males and

four females) at the University of Kentucky (Table 1). Their mean age

was 45.5 (range 10–61) years. As previously described in detail (Blair

et al., 2016), hearts were passed to a researcher as soon as they were

F IGURE 1 Schematic introducing dynamic filament coupling between thick and thin filaments. Thin-filament regulation involves Ca2+ binding
to troponin and subsequent movement of tropomyosin to expose actin sites along the thin filament, to which myosin can bind and form force-

generating cross-bridges. Thick-filament regulation involves myosin OFF–ON transition kinetics, which is a mechanosensitive equilibrium that
shifts myosin heads from OFF to ON as muscle force increases. Myosin heads in the OFF state (also called the super-relaxed state) cannot bind
actin, whereas those in the ON state (also called the disordered-relaxed state) can bind actin to form force-generating cross-bridges. This dynamic
regulatory coupling implies that any modification to thin-filament function will in turn change the status of thick-filament regulation and vice
versa (figure adapted from Campbell et al., 2018)
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excised from the body, immediately placed in ice cold saline slush and

transported back to the laboratory where tissue samples (�500 mg)

were snap frozen in liquid nitrogen and stored at −150�C within

�20 min. Mid-myocardial sections of the left ventricular free wall

were shipped overnight on dry ice to Washington State University

and stored at −80�C for 1–3 weeks, until they were dissected for

mechanics and biochemical experiments. All procedures were

approved by the University of Kentucky Institutional Review Board.

2.2 | Materials

2.3 | Solutions

Muscle mechanics solution concentrations were formulated by solving

equations describing ionic equilibria (Godt & Lindley, 1982) and all

concentrations are listed in mM unless otherwise noted. All chemicals

were purchased from Sigma (St. Louis, MO, USA) unless otherwise

noted. Skinning solution is as follows: 50 BES, 30.83 K propionate, 10

Na azide (Fisher; Fair Lawn, NJ, USA), 20 EGTA, 6.29 MgCl2 (J.T.

Baker; Center Valley, PA, USA), 6.09 ATP, 1 DTT, 20 BDM (Acros

Organics; Fair Lawn, NJ, USA), 50 Leupeptin (Peptides International;

Louisville, KY, USA), 275 Pefabloc (Acros Organics) and 1 E-64 (Pep-

tides International); with 1% Triton-X100 (wt/vol) and 50% glycerol

(wt/vol; J.T. Baker). Storage solution is the same as skinning solution

without Triton-X100. Relaxing solution is as follows:- pCa 8.0

(pCa = −log10[Ca2+]), 5 EGTA, 5 MgATP, 1 Mg2+, 0.3 Pi, 35 phospho-

creatine, 300 U/ml of creatine kinase, pH 7.0, at 200 ionic strength

adjusted with Na methanesulfonate. Activating solution is as follows:

same as relaxing solution but with pCa 4.5.

Mavacamten (MYK-461) was purchased from Axon Medichem

(Reston, VA, USA) and dissolved in DMSO (J.T. Baker) to give a 1-mM

stock solution. This was then mixed with relaxing and activating solu-

tions to yield experimental solutions containing 0.5-μM mavacamten

and 0.05% DMSO (vol/vol). The 0.5-μM mavacamten concentration

was chosen as an intermediate between the IC50 value of 0.3 μM for

inhibiting myosin ATPase activity in biochemical assays using murine

and bovine myosin (Green et al., 2016) and plasma levels that effec-

tively relieved left ventricular outflow tract obstruction in clinical trial

patients (350–695 ng/ml = 1.28–2.54 μM; Heitner et al., 2019).

2.4 | Mechanical measurements using
permeabilized myocardial strips

Frozen tissue sections were thawed in ice-cold skinning solution

and dissected into thin strips (�180 μm in diameter and 700 μm

long). These were skinned overnight at 4�C, transferred to storage

solution and stored at −20�C for 0–5 days. On the day of experi-

ments, strips were mounted between a motor (P841.40, Physik

Instrumente, Auburn, MA) and a strain gauge (AE801, Kronex,

Walnut Creek, CA), lowered into a 30-μl droplet of relaxing solution

(with or without mavacamten) and stretched to a sarcomere length

of 1.9 or 2.3 μm as measured by digital Fourier transform analysis

(IonOptix Corp, Milton, MA). Mounting and measurement of strip

dimensions take roughly 10–15 min prior to making any tension

measurements, thereby reflecting the duration that a strip would

have been exposed to mavacamten prior to any mechanics

measurements. The maximal effect of mavacamten on cellular

contractility occurred within a 5-min incubation time and longer

incubations (up to an hour) did not produce any detrimental effects

on contractility (Sparrow et al., 2020). Solutions were maintained at

body temperature (37�C) throughout each experiment, using 2–3

strips at each condition for each heart. The type of experiment for

each myocardial strip (i.e. treatment group and sarcomere length)

was randomized.

Strips were activated in solutions (with or without mavacamten)

at pCa values ranging from 8.0 to 4.5 to measure the steady-state, iso-

metric force–pCa relationship. Force values were normalized to the

cross-sectional area of each preparation and reported as stress values

with units of kN�m−2. Stress–pCa curves from each strip were fit to a

4-parameter Hill equation using MATLAB (version 9.0.4, Mathworks,

Natick, MA, RRID:SCR_001622)

Stress pCað Þ= Fpas + Fact

1 + 10nH pCa−pCa50ð Þ , ð1Þ

where Fpas corresponds to passive stress under relaxed conditions,

Fact corresponds to maximal Ca2+-activated stress, pCa50 represents

the free Ca2+ concentration required to develop half the maximum

Ca2+-activated stress and nH is the Hill coefficient.

Sinusoidal length perturbations of 0.125% myocardial strip length

(clip-to-clip) were applied at 41 discreet frequencies from 0.125 to

100 Hz to measure the complex modulus as a function of angular

TABLE 1 Organ donor characteristics

Sample ID Age (year) Sex Race Diabetic Cause of Death

FC3CB 10 F Whitea No Anaphylaxis, anoxia

24713 47 F Whitea No Head trauma

BE497 56 M Black No data Cardiac arrest

31331 58 F Whitea No Anoxia

CF462 61 F Whitea Yes Stroke

2508D 41 M White No data Stroke

aNot Hispanic or Latino.
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frequency (Kawai & Brandt, 1980; Mulieri et al., 2002; Palmer

et al., 2007). The complex modulus represents viscoelastic myocardial

stiffness, which arises from the change in stress divided by the change

in muscle length that is in-phase (elastic modulus) and out-of-phase

(viscous modulus) with the oscillatory length change at each

frequency.

Characteristics of the elastic and viscous moduli responses over

the measured frequency range provide a signature of cross-bridge

binding and cycling kinetics. Shifts in the elastic modulus are useful

for assessing changes in the number of bound cross-bridges

between experimental conditions. Shifts in the viscous modulus are

useful for assessing changes in the work-producing and work-

absorbing characteristics of the myocardium that arise from force-

generating cross-bridges. Frequencies producing negative viscous

moduli represent regions of work-producing muscle function. The

“dip frequency” or frequency of the minimum viscous modulus

describes force-generating events and cross-bridge recruitment rate

(Campbell et al., 2004; Mulieri et al., 2002). Frequencies producing

positive viscous moduli represent regions of work-absorbing muscle

function. The “peak frequency” or frequency of the maximum

viscous modulus describes cross-bridge distortion events and

cross-bridge detachment rate (Campbell et al., 2004; Palmer

et al., 2007, 2011). These characteristic regions of minima and

maxima in the viscous modulus versus frequency relationship

were used to assess effects of mavacamten on cross-bridge

kinetics under maximal Ca2+-activated conditions. Given that

viscous moduli were only measured at discrete frequencies,

polynomials were fitted to regions of minima viscous modulus

(using 0.125- to 4-Hz data) and maxima viscous modulus

(using 3- to 40-Hz data) using MATLAB to create fitted curves at

0.05-Hz resolution. From these interpolated curves, we extracted

the frequency of minimum viscous modulus and frequency of

maximum viscous modulus.

2.5 | Data and statistical analysis

The data and statistical analysis comply with the recommendations

of the British Journal of Pharmacology on experimental design and

analysis in pharmacology (Curtis et al., 2018). Experimental data

were analysed in Statistical Analysis System (SAS; RRID:

SCR_008567, version 9.4.3, SAS Institute, Cary, NC) using linear

mixed effects models incorporating two main effects (drug treat-

ment and sarcomere length) and their interaction for the stress–

pCa fit parameters from Equation 1 and frequency parameters

extracted from curve fits to the minima and maxima viscous moduli.

These statistical analyses link data from the same hearts to optimize

statistical power and can be considered as the two-way equivalent

of a paired t-test (Haynes et al., 2014). Compound symmetry was

assumed for the covariance structure,and post hoc analyses were

performed using Tukey–Kramer corrections. P values less than 0.05

were considered significant.

2.6 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in the IUPHAR/BPS Guide to PHARMACOL-

OGY http://www.guidetopharmacology.org (Harding et al., 2018) and

are permanently archived in the Concise Guide to PHARMACOLOGY

2019/20 (Alexander et al., 2019).

3 | RESULTS

3.1 | Effects of mavacamten on Ca2+-activated
isometric contraction

Steady-state isometric stress (force normalized to cross-sectional

area) was measured as activating [Ca2+] increased from pCa 8

(relaxed) to 4.5 (maximally activated) in myocardial strips isolated from

donor hearts at 1.9- or 2.3-μm sarcomere length (Figure 2). For both

sarcomere lengths, mavacamten decreased Ca2+-activated force and

reduced Ca2+ sensitivity of the force–pCa relationship. As sarcomere

length increased, Ca2+-activated force and Ca2+ sensitivity of the

force–pCa relationship increased for control and mavacamten-treated

myocardial strips. Therefore, the typical length-dependent activation

response was maintained in the presence of mavacamten. Parameter

values for 4-parameter Hill fits (Equation 1) to each stress–pCa rela-

tionship are summarized in Figure 3 (Fact and Fpas) and Figure 4 (pCa50

and nH).

At 1.9-and 2.3-μm sarcomere length, 0.5-μM mavacamten sig-

nificantly reduced Ca2+-activated force by �25%–30%, compared

with control strips (Figure 3a). Ca2+-activated force also signifi-

cantly increased as sarcomere length increased. Similar findings

occurred for passive force, with 0.5-μM mavacamten significantly

reducing passive force at both sarcomere lengths (Figure 3b) and

passive force significantly increasing as sarcomere length increased.

These mavacamten-dependent decreases in passive force suggest

that a portion of the passive force measured at pCa 8.0 arises

from bound cross-bridges and that mavacamten stabilization of the

myosin OFF state reduces this myosin-based contribution to pas-

sive force.

pCa50 values of the force–pCa relationship quantify the Ca2+ con-

centration required to produce half-maximal Ca2+-activated force and

describe the sensitivity of myocardial force to Ca2+ (Figure 4a).

For both sarcomere lengths, 0.5-μM mavacamten significantly

reduced the Ca2+ sensitivity of force by more than 0.1 pCa units com-

pared with control (average ΔpCa50 = 0.17 for 1.9-μm strips and

ΔpCa50 = 0.12 for 2.3-μm strips). The Ca2+ sensitivity of force also

significantly increased as sarcomere length increased, exhibiting a

length-dependent activation response for both control and

mavacamten-treated strips. Hill coefficients (nH) represent the degree

of cooperativity (i.e. slope > 1) in the force–pCa relationship

(Figure 4b), wherein mavacamten significantly increased nH and sarco-

mere length did not significantly affect nH.
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3.2 | Effects of mavacamten on myocardial
viscoelasticity under maximal Ca2+-activated
conditions

Sinusoidal length–perturbation analysis was used to measure the

myocardium's viscoelastic characteristics and the effects of

mavacamten on cross-bridge recruitment and detachment rates at

maximally activated conditions (pCa 4.5). For both sarcomere lengths,

mavacamten reduced elastic moduli values across a wide range of fre-

quencies (Figure 5a,b), indicating less cross-bridge binding in

mavacamten-treated strips under maximally activated conditions.

These decreases in cross-bridge binding also underlie the lower force

values observed for mavacamten-treated strips (Figure 2), as changes

in elastic moduli and isometric tension typically mirror each other.

Frequency shifts in the viscoelastic system response follow from

changes in the enzymatic cross-bridge cycling kinetics under Ca2

+-activated conditions. These frequency shifts are most easily

observed in the characteristic dips and peaks of the viscous modulus

vs. frequency relationship (Figure 5c,d). Negative viscous moduli

represent frequencies where the muscle produces work and positive

viscous moduli represent frequencies where the muscle absorbs work.

For both sarcomere lengths, mavacamten decreased the magnitude of

negative viscous moduli, indicating less work production in

mavacamten-treated strips than control strips. In addition, the

frequencies where mavacamten-treated strips generated work

were shifted towards lower frequencies. These shifts were quantified

via the frequency of minimum viscous modulus for each strip

(Figure 6a), indicating that cross-bridge recruitment rate slowed

in mavacamten-treated strips (Campbell et al., 2004; Mulieri

et al., 2002). Mavacamten also significantly increased the frequency

of maximum viscous modulus (Figure 6b), indicating that cross-bridge

detachment rate increased in mavacamten-treated strips at

physiological temperature.

4 | DISCUSSION

This study contributes new biophysical observations about how

mavacamten alters contractility in human myocardium at body tem-

perature. Early attempts to modulate sarcomere-level function in

patients who have heart failure are showing promise (Heitner

et al., 2019; Teerlink et al., 2016) and could be leveraged to

improve patient care. Sarcomere length-dependent increases in the

Ca2+ sensitivity of contraction are fundamental to the Frank–

Starling response in healthy hearts. Accordingly, drugs that compro-

mise length-dependent activation may be less effective therapies in

patients (Gollapudi et al., 2017). Herein, we show that mavacamten

preserves sarcomere length-dependent increases in the Ca2+ sensi-

tivity of force, while reducing maximum levels of force production.

Our data suggest that mavacamten may be a useful therapy for

patients who have hypertrophic cardiomyopathy and a

hypercontractile phenotype. It is less likely to help patients who

have depressed contractile function. We also note that our data

only quantify isometric force-length relationships and the rates of

cross-bridge recruitment and detachment. Cardiac function ulti-

mately depends on the power generated by myocytes during loaded

shortening and future studies investigating the effect of

mavacamten on the force-velocity relationship and/or pressure-

volume loops in the whole heart would be useful (Campbell

et al., 2020).

F IGURE 2 Effects of mavacamten on the isometric force–pCa relationship at 1.9- and 2.3-μm sarcomere length. (a and b) Steady-state force
values (normalized to cross-sectional area of each myocardial strip) are plotted against pCa (pCa = −log10[Ca2+]). Lines represent 4-parameter Hill

fits to Equation 1. Dashed lines show fits at 1.9-μm sarcomere length, replotted in panel (b). Data were gathered from six hearts, with a total of
17 control strips and 18 mavacamten strips at 1.9-μm sarcomere length and 18 control strips and 17 mavacamten strips at 2.3-μm sarcomere
length. Data are shown as mean ± SEM, error bars within symbol if not visible
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F IGURE 3 Effects of mavacamten on maximal Ca2+-activated
force and passive force at 1.9- and 2.3-μm sarcomere length.
(a) Maximal and (b) passive force values from fits to Equation 1 are
shown for each myocardial strip from each experimental group.
Significant main effects and the associated interaction from linear
mixed models analysis are listed above each panel for respective data

therein. Jitter plots (coloured symbols) show measurements for each
myocardial strip, with n listed in the legend of Figure 2. Black symbols
show mean ± SEM for each group plotted to the left of individual
measurements

F IGURE 4 Effects of mavacamten on calcium activation of
contraction at 1.9 and 2.3 μm sarcomere length. (A) pCa50 values and
(B) nH values from fits to Equation 1 are shown for each myocardial
strip from each experimental group. Significant main effects and the
associated interaction from linear mixed models analysis are listed
above each panel for respective data therein. Jitter plots (coloured
symbols) show measurements for each myocardial strip, with n listed
in the legend of Figure 2. Black symbols show mean ± SEM for each
group plotted to the left of individual measurements
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The current data suggest that mavacamten will modulate both

systolic and diastolic function. On the systolic side, hypertrophic car-

diomyopathy has typically been viewed as a hypercontractile pheno-

type because of a “gain of function” mutation (Green et al., 2016;

Moore et al., 2012). Mavacamten reduces Ca2+ sensitivity of contrac-

tion, which may reduce hypercontractility during systole and help to

normalize contraction. Administering mavacamten early in life to

transgenic mice that develop hypertrophic cardiomyopathy because

of a R403Q mutation in myosin heavy chain reduced ventricular

hypertrophy, cardiomyocyte disarray and myocardial fibrosis (Green

et al., 2016). Thus, mavacamten may benefit hypertrophic cardiomy-

opathy patients with hypercontractility via reducing force and Ca2+

sensitivity during systole, potentially leading to beneficial remodelling

of the heart.

Diastolic dysfunction is characterized by impaired relaxation and

compromised ventricular filling and is present in at least 50% of

patients who have heart failure (Aljaroudi et al., 2012; Lekavich

et al., 2015; Mozaffarian et al., 2016). The data showing that

mavacamten reduced passive tension at both sarcomere lengths

(Figure 3b) and increased cross-bridge detachment rate under maxi-

mally activated conditions (Figure 6b) suggest that mavacamten may

improve diastolic function (Sparrow et al., 2019; Sparrow et al., 2020;

Toepfer et al., 2019, 2020). However, the measured decreases in pas-

sive tension with mavacamten treatment may not fully illustrate the

effect of mavacamten on diastolic wall stress as the ventricle fills. One

aspect of this involves greater cross-bridge contributions to diastolic

function than we measured at pCa 8.0, because of estimated in vivo

diastolic pCa levels of 6.0–5.6 that could augment thin-filament

activation and diastolic wall stress (Bers, 2002). Another factor is that

hypertrophic cardiomyopathy can increase intracellular [Ca2+]

and [ADP] above normal levels (Sequeira et al., 2015; Van Der Velden

et al., 2018). These effects would normally enhance cross-bridge

binding. Accordingly, mavacamten might have a greater effect

in patients who have hypertrophic cardiomyopathy than was

measured in this study that used myocardium from organ donors.

Increases in myofilament Ca2+ sensitivity altered Ca2+ fluxes and poor

metabolic homeostasis can lead to arrhythmias in some cases of

hypertrophic cardiomyopathy (Baudenbacher et al., 2008; Schober

et al., 2012). Thus, it is possible that mavacamten could play a

cardioprotective role to resynchronize the timing of systolic and

diastolic function.

Previously, we used mathematical models to test how

mechanosensitive contributions of the myosin OFF–ON equilibrium

influence length-dependent activation of contraction (Campbell

F IGURE 5 Effects of
mavacamten on viscoelastic
myocardial stiffness at pCa 4.5 for
at 1.9- and 2.3-μm sarcomere
length. (a and b) Elastic and (c and d)
viscous moduli are plotted against
frequency for maximal Ca2
+-activated conditions. Data are
shown as mean ± SEM, with n listed

in the legend of Figure 2
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et al., 2018). These calculations showed that elevated passive and/or

active force augmented cross-bridge recruitment and contributed to

the dynamic regulation of contractility throughout a heartbeat

(Figure 1). We wondered if sarcomere length-dependent increases in

Ca2+ sensitivity would be amplified in mavacamten-treated strips. Our

data do not show this response in a statistically significant manner

(Figure 4a), although the pCa50 change between 1.9 and 2.3 μm was

threefold greater for mavacamten-treated strips (average

ΔpCa50 = 0.03 for control vs. 0.09 for mavacamten strips). Our find-

ings differ from a preliminary report using permeabilized myocardial

strips from pigs, where mavacamten suppressed maximal force and

blunted length-dependent increases in Ca2+ sensitivity (Henze

et al., 2019). X-ray diffraction data also showed that a small popula-

tion of cross-bridges remained sensitive to stretch, rather than

completely abolished, in the presence of mavacamten (Henze

et al., 2019).

Mavacamten stabilizes the OFF state (Figure 7) and shifts the

OFF–ON equilibrium towards super-relaxed myosin (Anderson

et al., 2018; Rohde et al., 2018; Toepfer et al., 2019, 2020). This

reduces the number of heads that can bind to actin and generate

force. Data supporting this mechanism include observations that

mavacamten slows cross-bridge association, Pi release and actin-

associated ADP release (Green et al., 2016; Kawas et al., 2017;

Rohde et al., 2018). Mavacamten also slows the rate of force

development in permeabilized myocardial strips from mice (Mamidi

et al., 2018). Our viscoelastic stiffness measurements are also

consistent with these findings (Figure 5) because mavacamten

reduced the amount of work generated by the myocardium

(Figure 5c,d) and the minimum frequency of the viscous modulus

(Figure 6a). These data imply that mavacamten slows the weak-to-

strong force bearing cross-bridge transition (Figure 7). It is also

possible that mavacamten limits work production from the heart at

the fastest heart rates, because the frequencies where myocardial

strips generate negative viscous moduli typically reflect the

physiological range of heart rates within a species. In summary,

data from multiple studies consistently suggest that mavacamten

stabilizes the OFF state, slows cross-bridge recruitment

and slows Pi release to suppress myocardial force generation

(Figure 7).

It is less clear how mavacamten affects cross-bridge detachment

and myocardial relaxation. Multiple mechanisms may be involved. Bio-

chemical studies show that mavacamten slows actin-independent

ADP release (i.e. ADP dissociation rate in the absence of actin) (Kawas

et al., 2017; Rohde et al., 2018). Other measurements show that

mavacamten slows actin–myosin association rate when the reaction

starts with unbound myosin in the ADP state (Kawas et al., 2017).

While direct evidence that mavacamten slows ADP dissociation from

strongly bound cross-bridges remains limited, mavacamten slows

cross-bridge ATPase in mouse myofibrils where the rate limiting step

is ADP release (Green et al., 2016). Our data show that mavacamten

increases the frequency of peak viscous modulus (Figure 6b), indicat-

ing that mavacamten speeds cross-bridge detachment. Mavacamten

also increases relaxation rate in human myofibrils (Scellini et al., 2020).

Both observations could follow from mavacamten increasing the

myosin–ATP association rate or the ATP affinity of myosin, though no

data directly support this (Figure 7). Scellini et al. also show that

mavacamten had no effect on relaxation rate in rabbit skeletal myofi-

brils, which suggests that the effects of mavacamten may vary with

species and muscle type.

F IGURE 6 Effects of mavacamten on frequency-dependent shifts
in the minimum and maximum viscous modulus at 1.9- and 2.3-μm
sarcomere length. The (a) frequency producing the minimum viscous
modulus and (b) frequency producing the minimum viscous modulus
from polynomial fits to these associated regions of interest.
Frequency shifts in the minimum and maximum viscous modulus
describe relative changes in cross-bridge recruitment and detachment
rates, respectively. Significant main effects and the associated
interaction from linear mixed models analysis are listed above each
panel for respective data therein. Jitter plots (coloured symbols) show
measurements for each myocardial strip, with n listed in the legend of
Figure 2. Black symbols show mean ± SEM for each group plotted to
the left of individual measurements
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Faster cross-bridge detachment could contribute to faster relaxa-

tion in mavacamten-treated cardiomyocytes (Sparrow et al., 2019;

Sparrow et al., 2020; Toepfer et al., 2019, 2020). A component of this

could involve thin filament dynamics (Figure 7) as Sparrow et al. used

genetically encoded calcium indicators to show that mavacamten

speeds the rates of Ca2+ binding and Ca2+ dissociation from troponin

(Sparrow et al., 2019). These authors also showed that mavacamten

decreased fluorescent intensity from these probes. This may follow

from mavacamten decreasing the myosin ON population, which could

attenuate myosin-based contributions to thin filament cooperativity.

Changes in muscle length and force could also influence troponin

dynamics, as X-ray diffraction measurements show that structural

changes along thick filaments are concomitant with structural changes

in thin filaments (Ait-Mou et al., 2016; Henze et al., 2019). Thus,

mavacamten may affect Ca2+ binding to troponin in addition to modu-

lating cross-bridge dynamics. These complex interactions reflect the

dynamic coupling of the myofilaments.

The discovery of OFF–ON transitions within thick filaments

reveals a new regulatory mechanism in cardiac muscle that could con-

tribute to the Frank–Starling law. One particularly interesting aspect is

the force-dependent recruitment of myosin to the ON state. This cre-

ates a force–feedback effect that enhances myosin-based generation

during isometric and/or eccentric contractions (Ait-Mou et al., 2016;

Brunello et al., 2020; Campbell, 2017; Fusi et al., 2017; Piazzesi

et al., 2018; Reconditi et al., 2017; Zhang et al., 2017). Thus, any

means of modulating length-dependent changes Ca2+ sensitivity may

lead to significant functional effects on contraction and relaxation

dynamics in the heart. Prior to the discovery of force-dependent

OFF–ON transitions, length-dependent changes in Ca2+-sensitivity

were thought to reflect changes in thin-filament function and/or the

binding kinetics of individual myosin heads (Gordon et al., 2000). It is

now clear that therapies targeting one of these mechanisms will have

indirect effects on the other. Nevertheless, the current data provide

new understanding about how mavacamten reduces contractility in

human myocardium and bolster its potential as a therapy in patients

who have hypertrophic cardiomyopathy and a hypercontractile phe-

notype (Ho et al., 2020). More generally, our findings suggest that the

OFF–ON equilibrium of myosin may be an important therapeutic tar-

get in cardiac disease.
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